Symbolbild mit einem Rollregal und Binärcode

Data Science Services

Funding proposals

  • Reviewing data science parts in your proposals

Data Science Pipeline

  • Analysing your research questions from data science perspective Helping to get data (APIs, web scraping, databases, files)
  • Scrubbing and cleaning your data (Python, R)
  • Exploratory data analysis (Python, R)
  • Modelling your data (training neural networks) (Python, R)
  • Data visualization and storytelling (Python, R)
  • Consulting on publishing a data paper in a data journal FAIR Sharing and archiving your data, models and visualizations in data repositories

Codes and algorithms

  • Writing a reproducible open-source code (Python, R)
  • Code organization and documentation at GitHub
  • Reviewing your software repo FAIR sharing and archiving your software in data repositories
  • Consulting on publishing a software paper in a software journal

Infrastructure for data science

  • Consulting on computational resources, high performance computing (HPC)
  • Consulting on free cloud infrastructure and programs (Kaggle, Google Colab, Google Cloud for education, TPU Research Cloud)
  • Consulting on deploying deep learning models in production

Low-code and no-code data science

  • Consulting on low-code libraries (PyCaret, H20 AutoML, Auto-ViML, TPOT, AutoKeras)
  • Consulting on no-code tools (Google Cloud Auto ML and ML KIT, Runway AI, Lobe, CreateML, RapidMiner, DataRobot)
  • Consulting on researching with chat bots (ChatGPT and its alternatives)

Networking

Contact

Forschungsdatenzentrum (FDZ)

Forschungsdatenzentrum (FDZ)

Team: Irene Schumm, Phil Kolbe, David Morgan, Thomas Schmidt, Renat Shigapov, Christos Sidiropoulos, Larissa Will
University of Mannheim
Universitätsbibliothek Mannheim
Schloss Schneckenhof West
68161 Mannheim